Home
Class 12
MATHS
A pair of curves y=f1(x) and y=f2(x) are...

A pair of curves `y=f_1(x)` and `y=f_2(x)` are such that following conditions are satisfied.(i) The tangents drawn at points with equal abscissae intersect on y-axis.(ii) The normals drawn at points with equal abscissae intersect on x-axis. Answer the question:If curve `y=f_1(x)` passes through `(1,1)` and curve `y=f_2(x)` passes through `(2,3)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

A pair of curves y=f_1(x) and y=f_2(x) are such that following conditions are satisfied.(i) The tangents drawn at points with equal abscissae intersect on y-axis.(ii) The normals drawn at points with equal abscissae intersect on x-axis. Answer the question:Which of the following is true (A) f\'_1(x)+f\'_2(x)=c (B) f\'_1(x)-f\'_2(x)=c (C) f\'_1^2(x)-f\'_1^2(x)=c (D) f\'_1^2(x)+f\'_2^2(x)=c

Find a pair of curves such that (a) the tangents drawn at points with equal abscissas intersect on the y-axis. (b) the normal drawn at points with equal abscissas intersect on the x-axis. (c) one curve passes through (1,1) and other passes through (2, 3).

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/n) are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question:The equation of curve y=f(x)

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/n) are such that the tangents drawn to them at the point with equal abscissae intersect on x axis

Given the curves y=f(x) passing through the point (0,1) and y=int_(-oo)^(x) f(t) passing through the point (0,(1)/(2)) The tangents drawn to both the curves at the points with equal abscissae intersect on the x-axis. Then the curve y=f(x), is

Given two curves: y=f(x) passing through the point (0,1) and g(x)=int_(-oo)^xf(t)dt passing through the point (0,1/n)dot The tangents drawn to both the curves at the points with equal abscissas intersect on the x-axis. Find the curve y=f(x)dot

The tangent to the curve y=xe^(x^2) passing through the point (1,e) also passes through the point

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/n) are such that the tangents drawn to them at the point with equal abscissae intersect on x axis. find Curve y=f(x)

Area bounded by y=f^(-1)(x) and tangent and normal drawn to it at points with abscissae pi and 2pi , where f(x)=sin x-x is

The tangent at any point (x , y) of a curve makes an angle tan^(-1)(2x+3y) with x-axis. Find the equation of the curve if it passes through (1,2).