Home
Class 12
MATHS
Curves y=f(x) passing through the point ...

Curves `y=f(x)` passing through the point `(0,1)` and `y=int_-oo^x f(t) dt` passing through the point `(0,1/n)` are such that the tangents drawn to them at the point with equal abscissae intersect on x-axis. Answer the question:The equation of curve `y=f(x)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Curves y=f(x) passing through the point (0,1) and y=int_-oo^x f(t) dt passing through the point (0,1/n) are such that the tangents drawn to them at the point with equal abscissae intersect on x axis. find Curve y=f(x)

Given the curves y=f(x) passing through the point (0,1) and y=int_(-oo)^(x) f(t) passing through the point (0,(1)/(2)) The tangents drawn to both the curves at the points with equal abscissae intersect on the x-axis. Then the curve y=f(x), is

Given two curves: y=f(x) passing through the point (0,1) and g(x)=int_(-oo)^xf(t)dt passing through the point (0,1/n)dot The tangents drawn to both the curves at the points with equal abscissas intersect on the x-axis. Find the curve y=f(x)dot

The tangent to the curve y=xe^(x^2) passing through the point (1,e) also passes through the point

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then The function f(x) is

We are given the curves y=int_(-oo)^(x)f(t) dt through the point (0,(1)/(2)) and y=f(X), where f(x)gt0 and f(x) is differentiable, AAx in R through (0,1). If tangents drawn to both the curves at the point wiht equal abscissae intersect on the point on the X-axis, then int_(x to oo)(f(x))^f(-x) is

A pair of curves y=f_1(x) and y=f_2(x) are such that following conditions are satisfied.(i) The tangents drawn at points with equal abscissae intersect on y-axis.(ii) The normals drawn at points with equal abscissae intersect on x-axis. Answer the question:If curve y=f_1(x) passes through (1,1) and curve y=f_2(x) passes through (2,3)

We are given the curvers y=int_(- infty)^(x) f(t) dt through the point (0,(1)/(2)) any y=f(x) , where f(x) gt 0 and f(x) is differentiable , AA x in R through (0,1) Tangents drawn to both the curves at the points with equal abscissae intersect on the same point on the X- axists The number of solutions f(x) =2ex is equal to

A pair of curves y=f_1(x) and y=f_2(x) are such that following conditions are satisfied.(i) The tangents drawn at points with equal abscissae intersect on y-axis.(ii) The normals drawn at points with equal abscissae intersect on x-axis. Answer the question:Which of the following is true (A) f\'_1(x)+f\'_2(x)=c (B) f\'_1(x)-f\'_2(x)=c (C) f\'_1^2(x)-f\'_1^2(x)=c (D) f\'_1^2(x)+f\'_2^2(x)=c

Find the point of intersection of the tangents drawn to the curve x^2y=1-y at the points where it is intersected by the curve x y=1-ydot