Home
Class 12
MATHS
The area under the curve y=|cosx-sinx|, ...

The area under the curve `y=|cosx-sinx|, 0 le x le pi/2`, and above x-axis is: (A) `2sqrt(2)+2` (B) `0` (C) `2sqrt(2)-2` (D) `2sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area enclosed by the curve y=sinx+cosxa n dy=|cosx-sinx| over the interval [0,pi/2] is (a)4(sqrt(2)-2) (b) 2sqrt(2) ( sqrt(2) -1) (c)2(sqrt(2) +1) (d) 2sqrt(2)(sqrt(2)+1)

If cos x=sqrt(1-sin 2x),0 le x le pi then a value of x is

The area between the curve y=xsin x and x-axis where o le x le 2 pi , is

Area between the x -axis and the curve y=cosx , when 0 le x le 2pi is:

Draw the graph of y=sin x and y=cosx, 0 le x le 2pi

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

The area enclosed by the curves y=sinx+cosx and y=|cosx−sinx| over the interval [0,pi/2] is (a) 4(sqrt2-1) (b) 2sqrt2(sqrt2-1) (c) 2(sqrt2+1) (d) 2sqrt2(sqrt2+1)

The area bounded by the curve y=|cos^(-1)(sinx)|-|sin^(-1)(cosx)| and axis from (3pi)/(2)lex le 2pi

Find the area under the curve y=sqrt(6x+4) (above the x-axis) from x=0 to x=2

Find the area bounded by the curve y=2 cosx and the X-axis from x = 0 to x=2pi .