Home
Class 12
MATHS
The integral int (xdx)/(2-x^2+sqrt(2-x^2...

The integral `int (xdx)/(2-x^2+sqrt(2-x^2)` equals: (A) `log|1+sqrt(2+x^2)|+C` (B) `xlog|1-sqrt(2+x^2)|+C` (C) `-log|1+sqrt(2-x^2)|+C` (D) `xlog|1-sqrt(2-x^2)|+C`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^3dx)/(sqrt(1+x^2)) is equal to (A) 1/3sqrt(1+x^2)(2+x^2)+C (B) 1/3sqrt(1+x^2)(x^2-1)+C (C) 1/3(1+x^2)^(3/2)+C (D) 1/3sqrt(1+x^2)(x^2-2)+C

int(dx)/(x(x^2+1) equal(A) log|x|-1/2log(x^2+1)+C (B) log|x|+1/2log(x^2+1)+C (C) -log|x|+1/2log(x^2+1)+C (D) 1/2log|x|+log(x^2+1)+C

int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) + c (B) sqrt(x^4 + 2 - 1/x^2) + c (C) sqrt(x^2 + 1/x^2 + 1) + c (D) sqrt((x^4-x^2+1)/x) + c

int(x dx)/((x-1)(x-2) equal(A) log|((x-1)^2)/(x-2)|+C (B) log|((x-2)^2)/(x-1)|+C (C) log|((x-1)^2)/(x-2)|+C (D) log|(x-1)(x-2)|+C

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

int 1/ sqrt (a^2 + x^2) dx = log ( x + sqrt(x^2 + a^2)) + c

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int1/(1+sqrt(x))"dx" is equal to a. 2sqrt(x)+2ln|1+sqrt(x)|+c b. 2sqrt(x)-2ln|1+sqrt(x)|+c c. 2sqrt(x)-2ln|1-sqrt(x)|+c d. 2sqrt(x)-ln|1+sqrt(x)|+c

int1/(1+sqrt(x))"dx" is equal to 2sqrt(x)+2ln|1+sqrt(x)|+c b. 2sqrt(x)-2ln|1+sqrt(x)|+c c. 2sqrt(x)-2ln|1-sqrt(x)|+c d. 2sqrt(x)-ln|1+sqrt(x)|+c

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these