Home
Class 12
MATHS
The area enclosed by the curve y=sinx+co...

The area enclosed by the curve `y=sinx+cosxa n dy=|cosx-sinx|` over the interval `[0,pi/2]` is `(a)4(sqrt(2)-2)` (b) `2sqrt(2)` (`sqrt(2)` -1) `(c)2(sqrt(2)` +1) (d) `2sqrt(2)(sqrt(2)+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The area enclosed by the curves y=sinx+cosx and y=|cosx−sinx| over the interval [0,pi/2] is (a) 4(sqrt2-1) (b) 2sqrt2(sqrt2-1) (c) 2(sqrt2+1) (d) 2sqrt2(sqrt2+1)

The value of sqrt(3-2\ sqrt(2)) is (a) sqrt(2)-1 (b) sqrt(2)+1 (c) sqrt(3)-sqrt(2) (d) sqrt(3)+\ sqrt(2)

int_0^(sqrt(2)) [x^2] dx is equal to (A) 2-sqrt(2) (B) 2+sqrt(2) (C) sqrt(2)-1 (D) sqrt(2)-2

The area under the curve y=|cosx-sinx|, 0 le x le pi/2 , and above x-axis is: (A) 2sqrt(2)+2 (B) 0 (C) 2sqrt(2)-2 (D) 2sqrt(2)

The value of the definite integral int_0^(pi/2)sqrt(tanx)dx is sqrt(2)pi (b) pi/(sqrt(2)) 2sqrt(2)pi (d) pi/(2sqrt(2))

1/(sqrt(9)-\ sqrt(8)) is equal to: (a) 3+2sqrt(2) (b) 1/(3+2sqrt(2)) (c) 3-2sqrt(2) (d) 3/2-\ sqrt(2)

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

If (0,1),(1,1)a n d(1,0) be the middle points of the sides of a triangle, its incentre is (2+sqrt(2),2+sqrt(2) ) (b) [2+sqrt(2),-(2+sqrt(2))] (2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]

The value of x in (0,pi/2) satisfying (sqrt(3)-1)/(sinx)+(sqrt(3)+1)/(cosx)=4sqrt(2) is / are

2. "(sqrt(8))^((1)/(3))="? (a) "2," (b) "4" (c) "sqrt(2)," (d) "2sqrt(2)"