Home
Class 12
MATHS
" The integral " int(sec^(2)x)/((secx+ta...

` " The integral " int(sec^(2)x)/((secx+tanx)^(9//2))dx " equals (for some arbitrary constant K)"`

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

int(sec^(2)x)/(sqrt(tanx))dx

Find the integral intsecx(secx+tanx)dx

int secx / (secx+tanx)dx =

Evaluate: int(sec^(2)x)/(1+tanx)dx

The value of int(xtanxsecx)/((tanx-x)^(2))dx is equal to

Evaluate: int(secx)/(log(secx+tanx)dx

solve int (sec^2x)/((1+tanx)^3) dx

The value of int(sec x (2 + sec x))/((1+2 sec x)^(2))dx , is equal to