Home
Class 12
MATHS
For x in (0,(5pi)/2) , define f(x)""=int...

For `x in (0,(5pi)/2)` , define `f(x)""=int_0^xsqrt(t)sint"dt"` Then f has : local maximum at `pi` and `2pi` . local minimum at `pi` and `2pi` local minimum at `pi` and local maximum at `2pi` . local maximum at `pi` and local minimum at `2pi` .

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the local maximum and local minimumof f(x)=x^(3)-3x in [-2,4].

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=sin2x , where 0ltxltpi

Let f(x)=sinx-x" on"[0,pi//2] find local maximum and local minimum.

If f(x)=(sin^2x-1)^("n"),"" then x=pi/2 is a point of local maximum, if n is odd local minimum, if n is odd local maximum, if n is even local minimum, if n is even

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=2sinx-x , -pi/2ltxltpi/ 2

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=sinx-cosx ,where 0ltxlt2pi

Let f(x)=x^(3) find the point at which f(x) assumes local maximum and local minimum.

Find the points of local maxima and local minima, if any, and local maximum and local minimum values of f(x)=sin2x-x , where -pi/2

Let f(x) =x +(1)/(x). find local maximum and local minimum value of f(x) . Can you explain this discrepancy of locally minimum value being greater than locally maximum value.

Find the local maxima and local minima for the given function and also find the local maximum and local minimum values f(x) = x^3−6x^2+9x+15