Home
Class 12
MATHS
The value of int(0)^(1)(8log(1+x))/(1+x^...

The value of `int_(0)^(1)(8log(1+x))/(1+x^(2))dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

The value of integral int_(0)^(1)(log(1+x))/(1+x^(2))dx , is

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

solve int_(1)^(2)(log x)/(x^(2))dx

The value of int_(0)^(1) (1)/(2x-3)dx is

int_(0)^(1)x log (1+2 x)dx

The value of int_(-1)^(1) (log(x+sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(x) dx-int_(-1)^(1) (log(x +sqrt(1+x^(2))))/(x+log(x+sqrt(1+x^(2))))f(-x)dx ,

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=