Home
Class 12
MATHS
If a^(2) + b^(2) = 23ab, show that : "...

If `a^(2) + b^(2) = 23ab`, show that :
`"log" (a+b)/(5) = (1)/(2) (log a + log b)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

Log(a^(2)-b^(2))=

If 9a^2 + 4b^2 = 18ab, then log (3a + 2b) =

Show that : log_(a)m div log_(ab)m = 1 + log_(a)b

If "log" (a-b)/(2) = (1)/(2) (log a + log b), show that : a^(2) + b^(2) = 6ab .

If a^(2) = log x, b^(3) = log y and (a^(2))/(2) - (b^(3))/(3) = log c , find c in terms of x and y.

Prove that : (i) (log a)^(2) - (log b)^(2) = log((a)/(b)).log(ab) (ii) If a log b + b log a - 1 = 0, then b^(a).a^(b) = 10

Statement-1: The solution set of the equation "log"_(x) 2 xx "log"_(2x) 2 = "log"_(4x) 2 "is" {2^(-sqrt(2)), 2^(sqrt(2))}. Statement-2 : "log"_(b)a = (1)/("log"_(a)b) " and log"_(a) xy = "log"_(a) x + "log"_(a)y

if a^2+4b^2=12ab, then log(a+2b)

if a^2+4b^2=12ab, then log(a+2b)