Home
Class 12
MATHS
If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x...

If `(log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y)`, then prove that: `x^x y^y z^z=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If (logx)/(q-r)= (logy)/(r-p)=(logz)/(p-q) prove that x^(q+r).y^(r+p).z^(p+q)=x^p.y^q.z^r

log a/(y-z)=log b/(z-x)=logc/(x-y), then a^xb^yc^z is equal to

If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the following is/are true? z y z=1 (b) x^a y^b z^c=1 x^(b+c)y^(c+b)=1 (d) x y z=x^a y^b z^c

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

If (x(y+z-x))/(logx)=(y(z+x-y))/(logy) =(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x

If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x

If log(x+z)+log(x-2y+z)=2log(x-z)," then "x,y,z are in

If "log"_(y) x = "log"_(z)y = "log"_(x)z , then

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot