Home
Class 12
MATHS
Prove that: a^x=10^(xlog10 a)...

Prove that: `a^x=10^(xlog_10 a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log 11=1.0414, prove that 10^11gt11^10 .

Prove that ^10 C_1(x-1)^2-^(10)C_2(x-2)^2+^(10)C_3(x-3)^2+-^(10)C_(10)(x-10)^2=x^2

Prove that : ""^(25)C_(10)+""^(24)C_(10)+……..+""^(10)C_(10)=""^(26)C_(11)

Prove that tan(pi/10) is a root of polynomial equation 5x^4-10 x^2+1=0.

Prove that (cos10^0+sin10^0)/(cos10^0-sin 10^0)=tan55^0

Prove that : (cos 10^0 - sin 10^0)/(cos 10^0 + sin 10^0) = tan 35^0

Prove that (cos100sin10^0)/(cos10^0-s in 10^0)=tan55^0

Prove that sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)] .

Prove that sqrt(10)[(sqrt(10)+1)^(100)-(sqrt(10)-1)^(100)] is an even integer .

Prove that : (cos 9x - cos 5x)/(sin 17x - sin 3x) = (-sin 2x)/(cos 10x)