Home
Class 12
MATHS
If (x(y+z-x))/log x = (y(z+x-y))/log y =...

If `(x(y+z-x))/log x = (y(z+x-y))/log y = (z(x+y-z))/log z ," prove that "x^(y) y^(x) = z^(y) y^(z) = x^(z) z^(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x(y+z-x))/(logx)=(y(z+x-y))/(logy) =(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x

If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x

Prove that : log _ y^(x) . log _z^(y) . log _a^(z) = log _a ^(x)

If (log x)/(y-z)=(logy)/(z-x) =(logz)/(x-y) , then prove that: x^x y^y z^z=1

If ("log"3)/(x-y) = ("log"5)/(y-z) = ("log" 7)/(z-x), " then " 3^(x+y) 5^(y+z) 7^(z+x) =

If x=1+(log)_a b c ,\ y=1+(log)_b c a\ a n d\ z=1+(log)_c a b ,\ then prove that x y z=x y+y z+z xdot

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

If x , y , z are in continued proportion, prove that : ((x + y)^(2))/((y + z)^(2)) = (x)/(z) .

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))