Home
Class 12
MATHS
2(loga+loga^2+loga^3+loga^4+...............

`2(loga+loga^2+loga^3+loga^4+................+loga^n)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

1.1!+2.2!+3.3!+.......n.n! is equal to

If a_1, a_2 a_n ,\ a_(n+1) are in GP and a_1>0AAI ,\ t h e n |loga_nloga_(n+2)loga_(n+4)loga_(n+6)loga_(n+8)loga_(n+10)loga_(n+12)loga_(n+14)loga_(n+16)| is equal to- 0 b. nloga_n c. n(n+1)loga_n d. none of these

If log_a(ab)=x then log_b(ab) is equals to

If a != 1 and l n a^(2) + (l n a^(2))^(2) + (l n a^(2))^(3) + ... = 3 (l n a + (l n a)^(2) + ( ln a)^(3) + (l n a)^(4) + ....) then 'a' is equal to

Q. If log_x a, a^(x/2) and log_b x are in G.P. then x is equal to (1) log_a(log_b a) (2) log_a(log_e a)+log_a log_b b (3) -log_a(log_a b) (4) none of these

If a_1,a_2,a_3,.....a_n.... are in G.P. then the determinant 'Delta=|[loga_n , loga_(n+1),loga_(n+2)],[loga_(n+3),loga_(n+4),loga_(n+5)],[loga_(n+6),loga_(n+7),loga_(n+8)]| is equal to- (A) -2 (B) 1 (C) -1 (D) 0

Show that the sequence loga ,log(a b),log(a b^2),log(a b^3), is an A.P. Find its nth term.

Show that the sequence loga ,log(a b),log(a b^2),log(a b^3), is an A.P. Find its nth term.

x^((log_x)log_a ylog_y z) is equal to

x^((log_x)log_a ylog_y z) is equal to