Home
Class 12
MATHS
If log2=0. 30101 ,\ log3=0. 47712 , then...

If `log2=0. 30101 ,\ log3=0. 47712 ,` then the number of digits in `6^(20)` is `15` b. `16` c. `17` d. `18`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If log2=0.301 and log3=0.477 , find the number of digits in: (3^15xx2^10)

If (log)_(10)2=0. 30103 ,(log)_(10)3=0. 47712 , then find the number of digits in 3^(12)*2^8

If log2=0.301 and log3=0.477, find the number of integers in (ii) 6^(20)

If log2=0.301 and log3=0.477, find the number of integers in 6^(20)

If log2=0.301 and log3=0.477, find the number of integers in 5^(200)

If log2=0.3010andlog3=0.4771 , find the value of log 6

If log2=0.301 and log3=0.477, find the value of log(3.375).

Given ,log2=0.301 and log3=0.477, then the number of digits before decimal in 3^12times2^8 is

If log_(10) 2 = 0.3010 and log_(10) 3 = 0.477 , then find the number of digits in the following numbers: (a) 3^(40)" "(b) 2^(32) xx 5^(25)" (c) 24^(24)

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)