Home
Class 12
MATHS
The number of positive integers satisfyi...

The number of positive integers satisfying ` x+log_(10)(2^(x)+1) = x log_(10) 5+log_(10) 6` is _______.

Promotional Banner

Similar Questions

Explore conceptually related problems

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

The value of (log_(10)2)^(3)+log_(10)8 * log_(10) 5 + (log_(10)5)^(3) is _______.

The number of integers satisfying log_((1)/(x))((2(x-2))/((x+1)(x-5)))ge 1 is

solve log_(10)(x+5)=1

Number of integers satisfying the inequality log_((x+3))(x^2-x) lt 1 is

The number of integers satisfying the inequality log_(sqrt(0.9))log_(5)(sqrt(x^(2)+5+x))gt 0 is

Number of integers le 10 satisfying the inequality 2 log_(1//2) (x-1) le 1/3 - 1/(log_(x^(2)-x)8) is ________.

Express log_(10)2 + 1 in the form of log_(10)x .

The sum of solution of the equation log_(10)(3x^(2) +12x +19) - log_(10)(3x +4) = 1 is

The number of real values of x satisfying the equation log_(10) sqrt(1+x)+3log_(10) sqrt(1-x)=2+log_(10) sqrt(1-x^(2)) is :