Home
Class 12
MATHS
Find the values of x satisfying the ineq...

Find the values of x satisfying the inequalities : `log_(0.1) (4x^2-1)gtlog_(0.1) 3x`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of x satisfying the inequalities : log_2(x^2-24)gtlog_2(5x)

Find the value of x satisfying the equations log_(3)(log_(2)x)+log_(1//3)(log_(1//2)y)=1 and xy^(2)=9

Find the values of x which satisfy the inequality -3 lt 2x -1 lt 19 .

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Solve: log_(0.1)(x^(2)+x-2)>log_(0.1)(x+3)

Find the value of x satisfying the equation, sqrt((log_3(3x)^(1/3)+log_x(3x)^(1/3))log_3(x^3))+sqrt((log_3(x/3)^(1/3)+log_x(3/x)^(1/3))log_3(x^3))=2

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

Solve the inequality: log_(2)(2x-3)gtlog_(2)(24-6x)

The number of negative integral values of x satisfying the inequality log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0 is :