`log_x2> 1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equationi log_((x^(2)-1))(x^(3)+6)=log_((x^(2)-1))(2x^(2)+5x)

if x >0 , and log_2 x + log_2 (x^(1/2)) + log_2 (x^(1/4))+ ------------ = 4 then x equals :

If 9^("log"3("log"_(2) x)) = "log"_(2)x - ("log"_(2)x)^(2) + 1, then x =

The number of points on the real line where the function f(x) = log_(|x^2-1|)|x-3| is not defined is

The domain of definition of the function f(x) = sqrt(log_(x^(2)-1)) x is

Evaluate : int (sqrt(x^(2) + 1) ( log (x^(2) + 1) - 2 log x))/( x^(4)) dx

Solve: (log)_(x+1/x)(log_2(x-1)/(x-2))>0

Evaluate int sqrt(x^2+1)[log(x^2+1)-2logx]/(x^4)dx

Find : int(sqrt(x^2+1)(log(x^2+1)-2logx)/(x^4)dx

Integrate the functions (sqrt(x^2+1)[log(x^2+1)-2logx])/(x^4)