Home
Class 12
MATHS
Solve : log7log5 (sqrt(x+5)+sqrt(x))=0...

Solve : `log_7log_5 (sqrt(x+5)+sqrt(x))=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

{:(Column -I,Column -II),((A)"if" 4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1)"then 2x equals",(P)1),((B)"The number of solutions of" log_(7)log_(5)(sqrt(x+5)+sqrt(x))=0 is,(Q)2),((C)"The number of values of x such that the middle term of",(R)3),(log_(2)2 log_(3)(2^(x)-5)log_(3)(2^(x)-(7)/(2))"is the average of the other two is",),((D)"if" alphabeta "are the roots of the equation",(S)4),(x^(2)-(3+2^(sqrt(log_(2)3)-3sqrt(log_(3)2)))x-2(3log_(3)^(2)-2^(log_(2)^(3)))=0,),("then" 2(alpha+beta)-alpha beta"equals",):}

log(sqrt(x)+1/sqrt(x))

The solution of the equation (log)_7(log)_5(sqrt(x+5)+sqrt(x)=0 is...

If (log)_7(log)_5(sqrt(x+5)+sqrt(x))=0, what is the value o x ? a. 3 b. 4 c. 2 d. 5

log_7log_7sqrt(7(sqrt(7sqrt(7))))=

If "log"_(6) {"log"_(4)(sqrt(x+4) + sqrt(x))} =0 , then x =

Solve for x: log_(sqrt3) (x+1) = 2

y=log[sqrt(x-a)+sqrt(x-b)]

Solve sqrt(5)x^2+x+sqrt(5)=0 .

Prove that log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2 .