Home
Class 12
MATHS
Show that the expression (tan(x+alpha))/...

Show that the expression `(tan(x+alpha))/(tan(x-alpha))` cannot lie between the values `tan^2 (pi/4-alpha)` and `tan^2(pi/4+alpha)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The expression tan^2alpha+cot^2alpha is

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to

If tan alpha + cot alpha=a , then the value of tan^(4)alpha + cot^(4)alpha is equal to

If (sin(theta+alpha))/(cos(theta-alpha))=(1-m)/(1+m) , prove that tan(pi/4-theta)tan(pi/4-alpha)=m

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

If 0 lt alpha lt (pi)/(16) and (1+tan alpha)(1+tan4alpha)=2 , then the value of alpha is equal to

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If cos (alpha + beta) = (4)/(5), sin (alpha - beta) = (5)/(13) and alpha and beta lie between 0 and (pi)/(4) , find tan 2 alpha .

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

Prove: (2)/( cot alpha tan 2 alpha ) = 1 - tan ^(2) alpha.