Home
Class 12
MATHS
If f(x) = sin^6x+ cos^6 x and M1 and M2...

If `f(x) = sin^6x+ cos^6 x and M_1 and M_2`, be the maximum and minimum values of `f(x)` for all values ofx then `M_1-M_2` is equal to

Answer

Step by step text solution for If f(x) = sin^6x+ cos^6 x and M_1 and M_2, be the maximum and minimum values of f(x) for all values ofx then M_1-M_2 is equal to by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function f(x) = sin x + cos 2x .

Q. Let f(x)=10-|x-10| AA x in[-9,9] If M and m be the maximum and minimum value of f(x) respectively then

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is

If m and M are the minimum and the maximum values of 4+1/2 sin^2 2x-2cos^4x, x in R then M-m is equal to...

Find the maximum and minimum values of f(x)=sinx+1/2cos2x in [0,\ pi/2] .

If maximum and minimum values of |sin^(-1)x|+|cos^(-1)x| are Mand m, then M+m is

The maximum and minimum values of 6 sin x cos x +4cos2x are respectively

A curve y=f(x) satisfies (d^2y)/dx^2=6x-4 and f(x) has local minimum value 5 at x=1 . If a and b be the global maximum and global minimum values of f(x) in interval [0,2] , then ab is equal to…

Find the maximum and the minimum values of f(x)=3x^2+6x+8,\ \ x in R , if any.

If M and m are maximum and minimum value of the function f(x)= (tan^(2)x+4tanx+9)/(1+tan^(2)x) , then (M + m) equals