Home
Class 12
MATHS
Prove that: (2cos2^ntheta+1)/(2costheta+...

Prove that: `(2cos2^ntheta+1)/(2costheta+1)=(2costheta-1)(2cos2theta-1)(2cos2^2theta-1) ...(2cos2^(n-1)theta-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (2 cos 2^n theta + 1)/(2 cos theta +1) = (2 cos theta -1) (2 cos 2theta -1) (2 cos 2^2 theta -1) … (2 cos 2^(n-1) theta -1)

Prove that : (1-costheta)(1+costheta)(1+cot^(2)theta)=1

Prove that: (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cot theta

Prove: tan^2thetacos^2theta=1-cos^2theta

Prove: (costheta)/(cos e c\ theta+1)+(costheta)/(cos e c\ theta-1)=2tantheta

Prove that: (sin2theta)/(1+cos2theta)=t a ntheta

Prove that: (sin2theta)/(1+cos2theta)=t a ntheta

If (2^n+1)theta=pi then 2^n costheta cos2theta cos2^2 theta .......cos 2^(n-1) theta=

Prove that (costheta)/(1-sin theta)+(1-sin theta)/(cos theta)=2sec theta .

Prove that : (sintheta +sin2theta)/(1+costheta+cos2theta)=tantheta