Home
Class 12
MATHS
Prove that the function: f(x)=cos^2x+cos...

Prove that the function: `f(x)=cos^2x+cos^2(pi/3+x)-cosx*cos(pi/3+x)` is constant function. Find the value of that constant

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x)=cos^(2)x -5 cosx -9 is :

Prove that the function f(x)=cosx is strictly increasing in (pi,\ 2pi)

Prove that cos^2x+cos^2(x+pi/3)+cos^2(x-pi/3)=3/2 .

Period of the function f(x) = sin((pi x)/(2)) cos((pi x)/(2)) is

The period of the function f(x)=c^((sin^2x) +sin^2 (x+pi/3)+cosxcos(x+pi/3)) is (where c is constant)

Find the range of the function f(x)=4cos^(3)x-8cos(2)x+1 .

Prove that : cos^(2)x+cos^(2)(x+(pi)/(3))+cos^(2)(x-(pi)/(3))=(3)/(2)

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

The maximum value of cos^2(pi/3-x)-cos^2(pi/3+x) , is