Home
Class 12
MATHS
For 0<x<pi/2, prove that cos(sinx)>sin(c...

For `0sin(cosx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the maximum value of sin(cosx)dot

Integrate the functions sin^(-1)(cosx)

sin2x+cosx=0

Evaluate: ("lim")_(xrarr0) (sin[cosx])/(1+[cosx])([dot] denotes the greatest integer function).

Evaluate lim_(xto0) (sin[cosx])/(1+[cosx]) ( [.] denotes the greatest integer function).

If I=int_0^(pi/2) cos(sinx)dx, J=int_0^(pi/2) sin(cosx)dx and K=int_0^(pi/2) cosxdx , then (A) IgtJgtK (B) JgtKgtI (C) KgtJgtI (D) IgtKgtJ

int sin^-1(cosx)dx =

Let 0ltalpha,beta,gammalt(pi)/2 are the solutions of the equations cosx=x,cos(sinx)=x and sin(cosx)=x respectively, then show that gammaltalphaltbeta .

If 0ltxlt(pi)/(2) exp [(sin^(2)x+sin^(4)x+sin^(6)x+'.....+oo)log_(e)2] satisfies the quadratic equation x^(2)-9x+8=0 , find the value of (sinx-cosx)/(sinx+cosx) .

Find the range of f(x)=sin(cosx).