Home
Class 12
MATHS
If A,B,C are the angles of a given trian...

If A,B,C are the angles of a given triangle ABC . If cosA.cosB.cosC=`(sqrt3-1)/8` and sinA.sinB.sinC=`(3+sqrt3)/8`The cubic equation whose roots are `tanA, tanB, tanC` is (A) `x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x-(3+2sqrt(3))=0` (B) `x^3-(3+-2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0` (C) `x^3+(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0` (D) `x^3-(3+2sqrt(3))x^2+(5+4sqrt(3))x+(3+2sqrt(3))=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: 4sqrt(3)x^(2)+5x-2sqrt(3)=0.

Solve the equation: sqrt(3)x^2-sqrt(2)x+3sqrt(3)= 0

Factorise: (i) 4sqrt(3)x^(2) + 5x-2sqrt(3) (ii) 7sqrt(2)x^(2)-10x - 4sqrt(2)

Solve the equation sqrt(3)x^(2)-sqrt(2)x+3sqrt(3)=0

Solve the equation: sqrt(3)x^2-sqrt(2)x+3sqrt(3)=" "0

The equaiton of the line which bisects the obtuse angle between the lines x-2y+4=0 and 4x-3y+2=0 (A) (4-sqrt(5))x-(3-2(sqrt(5)) y+ (2-4sqrt(5))=0 (B) (3-2sqrt(5)) x- (4-sqrt(5))y+ (2+4(sqrt(5))=0 (C) (4+sqrt(5)x-(3+2(sqrt(5))y+ (2+4(sqrt(5))=0 (D) none of these

lim_(x->sqrt(3))(x^2-3)/(x^2+3sqrt(3)x-12)

Solve for x sqrt3x^2-2sqrt(2)x-2sqrt3=0

Simplify: (i) (3sqrt(2)-2sqrt(2))/(3sqrt(2)+\ 2sqrt(3))+(sqrt(12))/(sqrt(3)-\ sqrt(2)) (ii) (sqrt(5)+\ sqrt(3))/(sqrt(5)-\ sqrt(3))+(sqrt(5)-\ sqrt(3))/(sqrt(5)+\ sqrt(3))

(1)/(2sqrt(5)-sqrt(3))-(2sqrt(5)+sqrt(3))/(2sqrt(5)+sqrt(3)) =