Home
Class 12
MATHS
The value of lim(x->pi/4)(1+[x])^(1//ln(...

The value of lim_(x->pi/4)(1+[x])^(1//ln(tanx)) (where[.] denote the greatest integer function) is equal to

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The value of lim_(xrarr(pi)/(2))([(x)/(3)])/(ln(sinx)) (where, [.] denotes the greatest integer function)

The value of int_(1)^(10pi)([sec^(-1)x]) dx (where ,[.] denotes the greatest integer function ) is equal to

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

The value of int_(0)^(10pi)[tan^(-1)x]dx (where, [.] denotes the greatest integer functionof x) is equal to

lim_(xto1) (xsin(x-[x]))/(x-1) , where [.] denotes the greatest integer function, is equal to

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to