Home
Class 12
MATHS
If in a A B C ,cos^2A+cos^2B+cos^2C=1, ...

If in a ` A B C ,cos^2A+cos^2B+cos^2C=1,` prove that the triangle is right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

If in a Delta A B C ,cos^2A+cos^2B+cos^2C=1, prove that the triangle is right angled.

If in a triangle ABC, cos A +cos B+cos C=3/2 , prove that the triangle is equilateral.

If cos^(2)A+cos^(2)B+cos^(2)C=1 , then triangle ABC is

In triangle ABC if 2sin^(2)C=2+cos2A+cos2B , then prove that triangle is right angled.

If sinA=sin^2Ba n d2cos^2A=3cos^2B then the triangle A B C is right angled (b) obtuse angled (c)isosceles (d) equilateral

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

If in a triangle A B C , (2cosA)/a+(cos B)/b+(2cosC)/c=a/(b c)+b/(c a) , then prove that the triangle is right angled.

In a triangle A B C , if cos A+2\ cos B+cos C=2. prove that the sides of the triangle are in A.P.

In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is