Home
Class 12
MATHS
Givent that pi/2 lt alphaltpi then the e...

Givent that `pi/2 lt alphaltpi` then the expression `sqrt((1-sinalpha)/(1+sinalpha))+sqrt((1+sinalpha)/(1-sinalpha))` (A) `1/(cosalpha)` (B) `- 2/(cosalpha)` (C) `2/(cosalpha)` (D) does not exist

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If piltalphalt(3pi)/2lt" then "sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to

If π<α<3π2 then sqrt((1-cosalpha)/(1+cosalpha))+sqrt((1+cosalpha)/(1-cosalpha)) is equal to (a) 2/(sinalpha) (b) -2/(sinalpha) (c) 1/(sinalpha) (d) -1/(sinalpha)

Prove that (sinalpha)/(1+cosalpha)+(1+cosalpha)/(sin alpha)=2"cosec "alpha .

The real value of alpha for which the expression (1- isin alpha)/(1+2i sinalpha) is purely real is

The set of all possible values of alpha in [-pi,pi] such that sqrt((1-sinalpha)/(1+sinalpha)) is equal to sec alpha-tanalpha, is

Let A_(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] , then :

Find the inverse of [(1, 0, 0),( 0,cosalpha,sinalpha),(0,sinalpha,-cosalpha)]

Find the amplitude of sinalpha+i(1-cosalpha)

(sqrt2-sinalpha-cosalpha)/(sinalpha-cosalpha) is equal to (a) sec(alpha/2-pi/8) (b) cos(pi/8-alpha/2) (c) tan(alpha/2-pi/8) (d) cot(alpha/2-pi/2)

The value of the integral int_0^1(dx)/(x^2+2xcosalpha+1) is equal to (a) sinalpha (b) alphasinalpha (c) alpha/(2sinalpha) (d) alpha/2sinalpha