Home
Class 12
MATHS
cos(pi/7) cos((3pi)/7) cos((5pi)/7) is ...

`cos(pi/7) cos((3pi)/7) cos((5pi)/7)` is (A) `1/8` (B) `-1/8` (C) `1/(2sqrt2)` (D) `1/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos(pi/7)cos((2pi)/7) cos((3pi)/7)=1/8

cos^2(pi/8) +cos^2((3pi)/8) +cos^2((5pi)/8)+cos^2 ((7pi)/8)=2

Prove that: cos(pi/7)cos((2pi)/7)cos((4pi)/7)=-1/8

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

cos^4(pi/8)+cos^4((3pi)/8)+cos^4((5pi)/8)+cos^4((7pi)/8)=

Prove that: cos(pi/7)cos(2pi/7)cos(4pi/7)=-1/8,

Prove that 4cos((2pi)/7).cos(pi/7)-1=2cos((2pi)/7) .

3.Prove that (i) "cos((2pi)/7)*cos((4pi)/7)*cos((8pi)/7)=1/8

The value of cos((2pi)/7)cos((4pi)/7)cos((6pi)/7) is a. -1//2 b. \ 1//2 c. \ 1//4 d. 1//8

cospi/5+cos(2pi)/5+cos(6pi)/5+cos(7pi)/5=0