Home
Class 12
MATHS
If tanA=a/(a+1) and tanB=1/(2a+1) then t...

If `tanA=a/(a+1)` and `tanB=1/(2a+1)` then the value of `A+B` is: (a).`0` (b). `pi/2` (c). `pi/3` (d). `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tanA=m/(m-1)\ a n d tanB=1/(2m-1), then prove that A-B=\ pi/4

If angles A and B satisfy (1+tanA)(1+tanB)=2 , then the value of A +B is

If tanA=5/6 and tanB=1/(11),\ p rov e\ t h a t\ A+B=pi/4

If tantheta=1/2a n dt a nvarphi=1/3, then the value of theta+varphi is pi/6 (b) pi (c) 0 (d) pi/4

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3

The amplitude of 1/i is equal to a. 0 b. pi/2 c. -pi/2 d. pi

The amplitude of 1/i is equal to 0 b. pi/2 c. -pi/2 d. pi

If xcosy+ycosx=pi then the value of y^(0) is equal to pi (b) -pi (c) 1 (d) 0

If (3-tan^2(pi/7))/(1-tan^2(pi/7))=kcos(pi/7) then the value of k is (a)1 (b) 2 (c) 3 (d) 4

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi