Home
Class 12
MATHS
If sinx+sin^(2)x+sin^(3)x=1, then pro...

If `sinx+sin^(2)x+sin^(3)x=1`, then prove that `cos^(6)x-4cos^(4)x+8cos^(2 )x-4=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

Prove that: cos^2 2x-cos^2 6x= sin4x sin8x

Prove that: cos^2 2x-cos^2 6x=sin4xsin8x

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

if sin x + sin^2 x = 1 , then the value of cos^2 x + cos^4x is

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-2

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sin x+sin^2=1 , then cos^8 x+2 cos^6 x+cos^4 x=

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are