Home
Class 12
MATHS
If Pn = cos^n theta+ sin^n theta then ...

If ` P_n = cos^n theta+ sin^n theta` then `2P_6-3P_4 + 1` =

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If P_(n) = cos^(n) theta + sin^(n) theta 6P_(10) -15P_(8) + 10P_(6) is equal to

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If P_(n) = cos^(n) theta + sin^(n) theta where theta [0,pi/2], n (-infinity, 2) then minimum of P_(n) will be 1. 1, 2. 1/2 , 3. sqrt(2) , 4. 1/sqrt(2)

Solve : cos p theta = sin q theta.

If P_(n) = cos^(n) theta + sin^(n) theta Maximum value of P_(1000) will be

If S_n=cos^n theta+sin^n theta then find the value of 3S_4-2S_6

Using De Moivre 's theorem prove that : ((1+cos theta +i sin theta)/(1+cos theta - i sin theta))^n= cos n theta + i sin n theta , where i = sqrt(-1)

If cos ec theta - sin theta = m and sec theta - cos theta = n, then show that (m ^(2) n ) ^(2//3) + (mn ^(2)) ^( 2//3) = 1.

If the coordinates of a variable point be (cos theta + sin theta, sin theta - cos theta) , where theta is the parameter, then the locus of P is