Home
Class 12
MATHS
If the mapping f(x)=ax+b,a lt0 and maps ...

If the mapping `f(x)=ax+b,a lt0` and maps [-1, 1] onto [0, 2] , then for all values of `theta, A=cos^(2) theta + sin^(4) theta` is such that

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that 1-cos^(2)theta-sin^(2)theta=0

Range of f(theta)=cos^2theta(cos^2theta+1)+2sin^2theta is

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

If A = sin^2 theta+ cos^4 theta , then for all real values of theta

Solve 5 cos 2 theta+2 "cos"^(2) theta/2 +1=0, -pi lt theta lt pi .

If (sin 3theta)/(cos 2theta)lt 0 , then theta lies in

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Solve for theta(0^(@) lt theta lt 90^(@)) : sin^(2)theta-1/2sintheta=0

Solve for theta (0^(@) lt theta lt 90 ^(@)) 2 sin ^(2) theta = (1)/(2)