Home
Class 12
MATHS
If x+y+z=pi,,tan x tanz=2and tanytanz=18...

If x+y+z=pi,,tan x tanz=2and tanytanz=18,then tan^(2)z=

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y=pi//4 and tan x+tan y=1 , then (n in Z)

If x,y,z are variables and 3tan x+4tany+5tanz=20, then the minimum value of tan^(2)x+tan^(2)y+tan^(2)z, is

If (tanx)/2=(tany)/3=(tanz)/5,x+y+z=pia n dtan^2x+tan^2y+tan^2z=(38)/Kt h a nK=_________

If x,y,z are in AP and tan^(-1)x,tan^(-1)y,tan^(-1)z are also in AP, then

If x, y, z are in A.P. and tan^(-1) x, tan^(-1) y and tan^(-1)z are also in A.P. then show that x=y=z and y≠0

If cos x=tany, cos y=tanz and cos z = tanx , then sinx = 2sin theta where theta is (where, x,y, z, theta are acuate angles)

Prove tanx+ tany+ tanz=tan xtany tanz if x+y+z = pi

Statement I If tan^(-1) x + tan^(-1) y = pi/4 - tan^(-1) z " and " x + y + z = 1 , then arithmetic mean of odd powers of x, y, z is equal to 1/3 . Statement II For any x, y, z we have xyz - xy - yz - zx + x + y + z = 1 + ( x - 1) ( y - 1) ( z - 1)

If tanx tany=a and x+y=2b show that tanx and tany are the roots of the equation z^2-(1-a)tan2b*z+a=0

If 18x=pi , then prove that tan 2x.tan3x.tan4x.tan8x=1