Home
Class 12
MATHS
If f(x) = cos ([pi]x) +cos [pi x], where...

If f(x) `= cos ([pi]x) +cos [pi x]`, where [] is the greatest integer function, then `f((pi)/(2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = cos [pi]x + cos [pi x] , where [y] is the greatest integer function of y then f(pi/2) is equal to

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f(x)=cos[pi/x] cos(pi/2(x-1)) ; where [x] is the greatest integer function of x ,then f(x) is continuous at :

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

if f(x) = cos pi (|x|+[x]), where [.] denotes the greatest integer , function then which is not true ?

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

Let f(x)=cos x and g(x)=[x+1],"where [.] denotes the greatest integer function, Then (gof)' (pi//2) is

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

If f(x)=cos[pi^2]x , where [x] stands for the greatest integer function, then (a) f(pi/2)=-1 (b) f(pi)=1 (c) f(-pi)=0 (d) f(pi/4)=1/sqrt(2)