Home
Class 12
MATHS
If xi gt 0 for 1leilen and x1+x2+x3+…+xn...

If `x_i gt 0` for `1leilen` and `x_1+x_2+x_3+…+x_n=pi` then the greatest value of the sum `sinx_1+sinx_2+sinx_3+…+sin_n=…` (A) n (B) `pi` (C) `nsin\ pi/n` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi (sin((n+1)/2)x)/sinxdx= (A) 0 (B) pi/2 (C) pi (D) none of these

The solution of the equation sin^3x+sinxcosx+cos^3x=1 is (n∈N) (a) 2npi (b) (4n+1)pi/2 (c) (2n+1)pi (d) None of these

Find the point of inflection of the function: f(x)=sin x (a) 0 (b) n pi,n in Z (c) (2n+1)(pi)/(2),n in Z (d) None of these

Let [x] denote the greatest integer less than or equal to x , then int_0^(pi/4) sinx d(x-[x])= (A) 1/2 (B) 1-1/sqrt(2) (C) 1 (D) none of these

lim_(x->0)(sinx)^n/(sinx)^m,(mltn), is equal to (a)1 (b) 0 (c) n//m (d) none of these

lim_(x->0) (sinx^n)/((sinx)^m),(mltn), is equal to (a) 1 (b) 0 (c) n//m (d) none of these

Solutions of sin^(-1) (sinx) = sinx are if x in (0, 2pi)

General solution for |sinx|=cosx is (a) 2npi+pi/4,\ n in I (b) 2npi+-pi/4, n in 1 (c) npi+pi/4,\ n in 1 (d) none of these

If x_(1),x_(2),...,x_(n) are real numbers, then the largest value of the expression sinx_(1)cosx_(2)+sinx_(2)cosx_(3)+...+sinx_(n)cosx_(1), is

If [x] denotes the greatest integer function then the extreme values of the function f(x)=[1+sinx]+[1+sin2x]+...+[1+sin nx], n in I^(+), x in (0,pi) are