Home
Class 12
MATHS
For any real theta, the maximum value of...

For any `real theta,` the maximum value of `cos^(2)(costheta)+sin^(2)(sintheta)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

For any the real theta the maximum value of cos^2(costheta)+sin^2(sintheta) is

Maximum and minimum value of 2sin^(2)theta-3sintheta+2 is-

If costheta+sintheta=sqrt(2)costheta ,then find the value of (costheta-sintheta)/(sintheta) .

Minimum value of cos2theta+costheta for all real value of theta is

If theta is an acute angle and sintheta=costheta , find the value of 2tan^2theta+sin^2theta-1

A value of theta satifying 4costheta sintheta - 2sintheta =0 is

if sintheta-costheta=0, then the value of (sin^4theta+cos^4theta)

If sintheta-costheta=1, then the value of sin^3theta-cos^3theta is __________

Statement I The maximum value of sin theta+costheta is 2. Statement II The maximum value of sin theta is 1 and that of cos theta is also 1.

if A=[{:(costheta,sin theta ),(-sin theta,costheta):}] , then show that : A^(2)=[{:(cos2theta,sin2theta),(-sin2theta,cos2theta):}]