Home
Class 12
MATHS
The function f(x)=int(-1)^x t(e^t-1)(t-1...

The function `f(x)=int_(-1)^x t(e^t-1)(t-1)(t-2)^3(t-3)^5dt` has a local minimum at `x=` 0 (b) 1 (c) 2 (d) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

The function int_(-1)^(x)t(e^t-1)(t-1)(t-2)^3(t-3)^5dt has local minimum at x=

if f(x)=int_(-1)^(x)t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum then sum of values of x

(i) If f(x) = int_(0)^(sin^(2)x)sin^(-1)sqrt(t)dt+int_(0)^(cos^(2)x)cos^(-1)sqrt(t) dt, then prove that f'(x) = 0 AA x in R . (ii) Find the value of x for which function f(x) = int_(-1)^(x) t(e^(t)-1)(t-1)(t-2)^(3)(t-3)^(5)dt has a local minimum.

In (-4,4) the function f(x)=int_(-10)^x (t^2-4)e^(-4t) dt , has

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

Let f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt. Then, f decreases in the interval

If f(x) = int_(0)^(x) e^(t^(2)) (t-2) (t-3) dt for all x in (0, oo) , then

The interval in which f(x)=int_(0)^(x){(t+1)(e^(t)-1)(t-2)(t-4)} dt increases and decreases

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt