Home
Class 12
MATHS
In a Delta ABC, prove that (sinA+sinB)(s...

In a `Delta ABC,` prove that `(sinA+sinB)(sinB+sinC)(sinC+sinA)>sinAsinBsinC.`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any DeltaABC , prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

In DeltaABC , prove that: sinB+sinC gt sinA

In DeltaABC , prove that: sinA+sinB-sinC=4sinA/2sinB/2cosC/2

In DeltaABC , prove that: a) (sin2A + sin2B + sin2C)/(sinA+sinB+sinC) = 8sin(A/2) sin(B/2)sin(C/2)

In any DeltaABC , prove that: (sinB)/(sinC)=(c-acosB)/(b-acosC)

If A+B+C=pi , prove that : sin2A+sin2B+sin2C=4sinA sinB sinC

In any DeltaABC , prove that, (sinB)/(sinC)=(c-acosB)/(b-acosC) .

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

Prove that: sin(A+2B)sinA-sinBsin(2A+B)sinB=sin(A+B)sin(A-B)

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0