Home
Class 12
MATHS
If y= (sqrt(1-sin4A)+1)/(sqrt(1+sin4A)-1...

If `y= (sqrt(1-sin4A)+1)/(sqrt(1+sin4A)-1)` then one of the values of `y` is (A) `-tanA` (B) `cotA` (C) `tan(pi/4+A)` (D) `-cot(pi/4+A)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(sqrt(1-sin4x)+1)/(sqrt(1+sin 4x)-1) , then y can be

If y=(x^4-x^2+1)/(x^2+sqrt(3)x+1) and (dy)/(dx)=a x+b , then the value of a+b is (a) cot(pi/8) (b) cot((5pi)/12) (c) tan((5pi)/12) (d) tan((5pi)/8)

If 0 leq theta leq pi and sin(theta/2)=sqrt(1+sintheta)-sqrt(1-sintheta) , then the possible value of tan theta is (a) 4/3 (b) 0 (c) -3/4 (d) -4/3

If tanA=a/(a+1) and tanB=1/(2a+1) then the value of A+B is: (a). 0 (b). pi/2 (c). pi/3 (d). pi/4

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)sin 14)=pi/2, t h e n the value of sin^(-1)sin2x is (a) 6-2pi (b) 2pi-6 (c) pi-3 (d) 3-pi

If y= y=sqrt((1-sin 2x )/(1+sin 2 x)) prove that (dy)/(dx)+sec^2(pi/4-x)=0.

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)

If u=cot^(-1)sqrt(tanalpha)-tan^(-1)sqrt(tanalpha),t h e n tan(pi/4- u/2) is (a) sqrt(tanalpha) (b) sqrt(cotalpha) (c) tanalpha (d) cot alpha

If tan^(-1)(x^2+3|x|-4)+cot^(-1)(4pi+sin^(-1)s in 14)=pi/2, t h e n the value of sin^(-1)2x is 6-2pi (b) 2pi-6 pi-3 (d) 3-pi