Home
Class 12
MATHS
If 0 lt theta lt pi/2, x= underset(n=0)o...

If `0 lt theta lt pi/2, x= underset(n=0)overset(oo)sum cos^(2n) theta, y= underset(n=0)overset(oo) sumsin^(2n) theta` and `z=underset(n=0)overset(oo)sum cos^(2n) theta* Sin^(2n) theta`, then show `xyz=xy+z`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi/2, x= sum_(n=0)^(oo) cos^(2n) theta, y= sum_(n=0)^(oo) sin^(2n) theta and z=sum_(n=0)^(oo) cos^(2n) theta* Sin^(2n) theta , then show xyz=xy+z .

Find the underset(k=1)overset(oo)sumunderset(n=1)overset(oo)sumk/(2^(n+k)) .

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

If x = underset(n-0)overset(oo)sum a^(n), y= underset(n =0)overset(oo)sum b^(n), z = underset(n =0)overset(oo)sum C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

underset(r=0)overset(n)(sum)sin^(2)""(rpi)/(n) is equal to

underset(r=1)overset(n-1)(sum)cos^(2)""(rpi)/(n) is equal to

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

"For "0ltthetalt(pi)/(2) , if x=sum_(n=0)^(oo)cos^(2n)theta,y=sum_(n=0)^(oo)sin^(2n)phi,z=sum_(n=0)^(oo)cos^(2n)thetasin^(2n)phi , then

underset(n to oo)lim" " underset(r=2n+1)overset(3n)sum (n)/(r^(2)-n^(2)) is equal to

If underset(k=0)overset(n)(sum)(k^(2)+k+1)k! =(2007).2007! , then value of n is