Home
Class 12
MATHS
The length of the longest interval in wh...

The length of the longest interval in which the function `3sinx-4sin^3x` is increasing is `pi/3` (b) `pi/2` (c) `(3pi)/2` (d) `pi`

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the longest interval in which the function y=sin2x-2sinx increases for x in [0, pi] is

The length of the largest continuous interval in which the function f(x)=4x-tan2x is monotonic is (a) pi/2 (b) pi/4 (c) pi/8 (d) pi/(16)

In triangle ABC, angle A is greater than angle B. If the measure of angles A and B satisfy the equation 3sinx-4sin^3x-k=0 . Find the value of angle C (A) pi/3 (B) pi/2 (C) (2pi)/3 (D) (5pi)/6

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

f(x)=sin+sqrt(3)cosx is maximum when x= pi/3 (b) pi/4 (c) pi/6 (d) 0

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

The smallest positive x satisfying the equation (log)_(cosx)sinx+(log)_(sinx)cosx=2 is pi/2 (b) pi/3 (c) pi/4 (d) pi/6

Show that the function f(x)=sin(2x+pi//4) is decreasing on (3pi//8,\ 5pi//8) .

The values of x_1 between 0 and 2pi , satisfying the equation cos3x+cos2x=sin(3x)/2+sinx/2 are pi/7 (b) (5pi)/7 (c) (9pi)/7 (d) (13pi)/7

The solution(s) of the equation cos2x sin6x=cos3x sin5x in the interval [0,pi] is/are pi/6 (b) pi/2 (c) (2pi)/3 (d) (5pi)/6