Home
Class 12
MATHS
In a triangle ABC, Prove that sin^4A+sin...

In a `triangle ABC`, Prove that `sin^4A+sin^4B+ sin^4C=3/2+2cosAcosBcosC+1/2cos2Acos2Bcos2C`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, prove that: cos^4A+cos^4B+cos^4C= 3/2 + 2 cosA cosB cosC+ 1/2 cos 2A cos2B cos2C

In a triangle ABC, Prove that: sin^3A+sin^3B+sin^3C = 3cosA/2 cosB/2 cosC/2 +cos (3A)/2 cos (3B)/2 cos (3C)/2

In DeltaABC , prove that: sin^(2)A+sin^(2)B+sin^(2)C =2+2cosAcosBcosC.

If A+B+C = pi , prove that : sin^(2)A +sin^(2)B +sin^(2)C = 2(1+cosAcosBcosC)

If DeltaABC , prove that: a) sin^(2)A+sin^(2)B-sin^(2)C=2sinAsinBcosC b) cos^(2)A+cos^(2)B-cos^(2)C=1-2sinAcosBsinC c) cos^(2)A+cos^(2)B+cos^(2)C=1-2cosAcosBcosC

Prove that sin2A + sin2B + sin2C = 4sinA · sinB · sin C

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B) = 3sinAsinBsinC

If A+B+C= pi/2 ,prove that: sin2A-sin2B+sin2C=4sinAcosBsinC

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

Prove that sinA+sin2A+sin4A+sin5A=4 cos(A/2)cos((3A)/2)sin3A