Home
Class 12
MATHS
In a triangle ABC, Prove that: sin^3A+si...

In a triangle ABC, Prove that: `sin^3A+sin^3B+sin^3C`= `3cosA/2 cosB/2 cosC/2 +cos (3A)/2 cos (3B)/2 cos (3C)/2`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , Prove that sin^4A+sin^4B+ sin^4C=3/2+2cosAcosBcosC+1/2cos2Acos2Bcos2C

If A+B+C=pi/2 , prove that: sin2A + sin2B+sin2C = 4cosA cosB cosC

In a triangle ABC, prove that: cos^4A+cos^4B+cos^4C= 3/2 + 2 cosA cosB cosC+ 1/2 cos 2A cos2B cos2C

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

Prove that: sin3e sin^3e+cos3ecos^3e=cos^3 2e

If A+B+C=180^0 , prove that : sin^2 A + sin^2 B + sin^2 C =2 (1+cosA cosB cosC)

Prove that: \ sin3A+sin2A-sin A=4sin A cos (A/2)cos((3A)/2)

Prove that : cos^3 A cos 3A + sin^3 A sin 3A = cos^3 2A

Prove that: sin 3x + sin 2x - sin x = 4 sin x cos x/2 cos (3x)/2

In any triangle ABC, prove that sin^3Acos(B-C)+sin^3Bcos(C-A)+sin^3Ccos(A-B) = 3sinAsinBsinC