Home
Class 12
MATHS
Prove that (cotA/2+cotB/2)(asin^2B/2+bsi...

Prove that `(cotA/2+cotB/2)(asin^2B/2+bsin^2A/2)=ccotC/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

In A B C ,(cot A/2+cotB/2)(asin^2B/2+bsin^2A/2)= cotC (b) ccotC (c) cotC/2 (d) ccotC/2

In A B C ,(cot (A/2)+cot(B/2))(asin^2(B/2)+bsin^2(A/2))= (a) cotC (b) c cotC (c) cot(C/2) (d) c cot(C/2)

Prove that: cotA/2-tanA/2=(cosA/2)/(sinA/2)-(sinA/2)/(cosA/2) =(cos^(2)A/2-sin^(2)A/2)/(sinA/2cosA/2) =cosA/(1/2.(2sinA/2cosA/2)) =(2cosA)/(sinA)=2cotA = RHS. Hence Proved.

Prove that: cotA-cot2A="cosec"2A

If A ,\ B ,\ C are the interior angles of a triangle A B C , prove that tan((C+A)/2)=cotB/2 (ii) sin((B+C)/2)=cosA/2

In DeltaABC , prove that: cotA/2+cotB/2+cotC/2=(a+b+c)/(a+b-c)cotC/2

In DeltaABC , prove that: 2[asin^(2)B/2+bsin^(2)A/2]=a+b-c

In a triangle ABC, prove that (cot(A/2)+cot(B/2)+cot(C/2))/(cotA+cotB+cot(C))=((a+b+c)^2)/(a^2+b^2+c^2)

Prove that : cotA-tanA=(2cos^2A-1)/(sinAcosA)

Prove that : (1+cotA)/(cosA)+(1+tanA)/(sinA)=2(secA+"cosec"A)