Home
Class 12
MATHS
Let O be a point inside a triangle A B C...

Let `O` be a point inside a triangle `A B C` such that `/_O A B=/_O B C=/_O C A=omega` , then show that: `cotomega=cotA+cotB+cot C` `Cos e c^2omega=cos e c^2A+cos e c^2B+cos e c^2C`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: cot^2A cos e c^2B-cot^2B cos e c^2A=cot^2A-cot^2B .

In A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

The value of cos e c10^0+cos e c50^0-cos e c70^0 is ____

Which of the following is the greates? cos e c1 (b) cos e c2 cos e c4 (d) cos e c(-6)

In triangle A B C , prove that cos e c A/2+cos e c B/2+cos e c C/2geq6.

Prove: (cos e c\ A)/(cos e c\ A-1)+(cos e c\ A)/(cos e c\ A+1)=2sec^2A

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

If A+B+C=pi , prove that cotA+cotB+cotC-cos e cAdotcos e cBdotcos e cC=cotAdotcotBdotcotCdot

Prove the following identities: cot^4A-1=cos e c^4A-2cos e c^2A

In any triangle ABC, show that : 2a cos (B/2) cos (C/2) = (a+b+c) sin (A/2)