Home
Class 12
MATHS
If in a triangle A B C ,cosA+2cosB+cosC=...

If in a triangle `A B C ,cosA+2cosB+cosC=2` prove that the sides of the triangle are in `AP`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle A B C , if cos A+2\ cos B+cos C=2. prove that the sides of the triangle are in A.P.

In a triangle ABC cosA+cosB+cosC<=k then k=

In any A B C ,2(bc cosA+ ca cosB+ab cosC) =

If in a Delta ABC, cosA+ cosB + cosC =3/2. Prove that DeltaABC is an equilateral triangle.

Let cosA+cosB + cos C=3/2 in a triangle then the type of the triangle is

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In a triangle ABC, if (cosA)/a=(cosB)/b=(cosC)/c and the side a =2 , then area of triangle is

In as triangle ABC prove that: cos (A+B)+cosC=0

In a triangle ABC , acosB + b cosC + c cosA =(a+b+c)/2 then

If in a triangle ABC , 2(cosA)/a+(cosB)/b+2(cosC)/c=a/(bc)+b/(ca) , then the value of the angle A, is