Home
Class 12
MATHS
If A+B+C=pi, prove that: cot^2 A+cot^2 B...

If `A+B+C=pi`, prove that: `cot^2 A+cot^2 B + cot^2 C ge 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : cot, A/2+ cot, B/2 + cot, C/2 = cot, A/2 cot, B/2 cot, C/2

Prove that: cot2A + tanA= cotA - cot 2A

Prove that tan A - cot A =-2 cot2A

Prove that: cot^2A-tan^2A=4\ cot2A cos e c2A

In a DeltaABC, prove that: 2r le (a cot A+ b cot B+ c cot C)/(3)leR

If cos(A+B)sin(C+D)=cos(A-B)sin(C-D) , prove that cot A cot B cot C=cotD .

In any DeltaABC , prove that cot (A/2) + cot (B/2) + cot (C/2) = (a+b+c)/(b+c-a) cot (A/2)

If A + B= pi/4 , show that (cot A-1) (cot B-1) =2

In any triangle A B C , prove that: (b-c)cot A/2+(c-a)cot B/2+(a-b)cot C/2 =0

In DeltaABC , prove that: cot\ A/2+cot\ B/2+cot\ C/2=((a+b+c)^(2))/(4Delta)