Home
Class 12
MATHS
The sides of a triangle are alpha -beta,...

The sides of a triangle are `alpha -beta, alpha +betaand sqrt(3 alpha^(2)+beta^(2)),(alpha gt beta gt0).` Its largest angle is

Promotional Banner

Similar Questions

Explore conceptually related problems

The lengths of the sides of a triangle are alpha-beta, alpha+beta and sqrt(3alpha^2+beta^2), (alpha>beta>0) . Its largest angle is

Factorise alpha^2 +beta^2 + alpha beta

(a) show that alpha^2 + beta^2 + alpha beta =0

If the sides of a right angled triangle are {cos 2 alpha + cos 2 beta + 2 cos (alpha+beta)} and {sin 2 alpha+sin 2 beta + 2 sin (alpha+beta)} then the length of the hypotneuse is

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Sum of n terms of the series sinalpha-sin(alpha+beta)+sin(alpha+2beta)-sin(alpha+3beta)+….

Sum of n terms of the series sinalpha-sin(alpha+beta)+sin(alpha+2beta)-sin(alpha+3beta)+….

Prove that: cos2alpha\ cos2beta+sin^2(alpha-beta)-sin^2(alpha+beta)=cos2(alpha+beta) .

If 3 sin alpha=5 sin beta , then (tan((alpha+beta)/2))/(tan ((alpha-beta)/2))=

Prove that: tan(alpha+beta)tan(alpha-beta)=(sin^2 alpha-sin^2 beta)/(cos^2 alpha-sin^2 beta)