Home
Class 12
MATHS
In an isosceles right angled triangle AB...

In an isosceles right angled triangle ABC, `/_B=90^0, AD` is the median then `(sin/_BAD)/(sin/_CAD)` is (A) `1/sqrt(2)` (B) `sqrt(2)` (C) 1 (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, the least valeu of (sin^2A+sinA+1)/(sinA)is (A) 3 (B) sqrt(3) (C) 9 (D) none of these

sqrt(3)int_0^pi dx/(1+2sin^2x)= (A) -pi (B) 0 (C) pi (D) none of these

In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=

In a right angled triangle ABC, write the value of sin^2 A + sin^2 B+ sin^2C

In a triangle ABC, a^4+b^4+c^4=2a^2b^2+b^2c^2+2a^2c^2 then sinA is equal to (A) 1/sqrt(2) (B) 1/2 (C) sqrt(3)/2 (D) none of these

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

If sin^(-1)x-cos^(-1)x=pi/6 , then x= (a) 1/2 (b) (sqrt(3))/2 (c) -1/2 (d) none of these

If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are 3/5,4/5 b. 1/(sqrt(3)),sqrt(2/3) c. 1/2,(sqrt(3))/2 d. none of these

ABC is an isosceles right triangle, right-angled at C . Prove that: A B^2=2A C^2dot

In a right-angled isosceles triangle, the ratio of the circumradius and inradius is (a) 2(sqrt(2)+1):1 (b) (sqrt(2)+1):1 2:1 (d) sqrt(2):1