Home
Class 12
MATHS
In a triangle ABC, a^4+b^4+c^4=2a^2b^2+b...

In a triangle `ABC, a^4+b^4+c^4=2a^2b^2+b^2c^2+2a^2c^2` then `sinA` is equal to (A) `1/sqrt(2)` (B) `1/2` (C) `sqrt(3)/2` (D) none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC , a^4+b^4+c^4=2c^2(a^2+b^2) prove that C=45^@ or 135^@

In a triangle ABC , (a^2-b^2-c^2) tan A +(a^2-b^2+c^2) tan B is equal to

In triangle, ABC if 2a^(2) b^(2) + 2b^(2) c^(2) = a^(4) + b^(4) + c^(4) , then angle B is equal to

(2^3)^4 = (a) 2^4*3 (b) 2^3*4 (c) (2^4)^3 (d) none of these

In a triangle ABC, let 2a^2+4b^2+ c^2= 2a(2b + c) , then which of the following holds good?

In a triangle A B C ,\ (a^2-b^2-c^2)tanA+(a^2-b^2+c^2)tanB is equal to (a^2+b^2-c^2)tanC (b) (a^2+b^2+c^2)tanC (b^2+c^2-a^2)tanC (d) none of these

In any triangle ABC, the least valeu of (sin^2A+sinA+1)/(sinA)is (A) 3 (B) sqrt(3) (C) 9 (D) none of these

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is

If the sides of a right-angled triangle are in A.P., then the sines of the acute angles are 3/5,4/5 b. 1/(sqrt(3)),sqrt(2/3) c. 1/2,(sqrt(3))/2 d. none of these

If in a triangle A B C ,(1+cosA)/a+(1+cosB)/b+(1+cosC)/c =(k^2(1+cosA)(1+cosB)(1+cosC)/(a b c) , then k is equal to (a) 1/(2sqrt(2)R) (b) 2R (c) 1/R (d) none of these